
Subgoal-Guided Policy Heuristic Search with Learned Subgoals

Jake Tuero, Michael Buro, Levi Lelis
Department of Computing Science, University of Alberta

Subgoal-Guided Policy Heuristic Search with Learned Subgoals

Jake Tuero, Michael Buro, Levi Lelis
Department of Computing Science, University of Alberta

Introduction

Policy Tree Search:
•A class of search algorithms which uses a policy to guide the search

•A policy is a probability distribution over the set of actions

•These algorithms provide guarantees on the number of expansions
required to solve a given problem, based on the quality of the policy

The Bootstrap Search-and-Learn Process:

•Randomly initialized neural models encoding the heuristic and the
policy are used to iteratively solve a subset of the training problems

• If the search cannot solve problems within a search budget, the
resulting trees are discarded

• If at least one problem is solved, the models are optimized on the
solution trajectories found

Motivation

• Search during the online bootstrap process generates a lot of data,
but none of it is used if the search terminates prematurely

•Existing methods use a single policy which can become overburdened
on complex domains; problems can usually be decomposed into
subtasks/subgoals

Problem Statement

•This work focuses on solving single-agent deterministic search
problems, using minimal domain knowledge

•Given a set of problem instances, the objective is to solve them while
minimizing the total search loss

Subgoal-Guided Policy Heuristic Search

φPHS

s

Codebook Entries
e1, . . . , ek

VQVAE
Decoder

ŝg0
ŝg1
...
ŝgk

πlow
θ (a|ŝgi , s)

πhi
ψ (ŝgi |s)

hω(s)

πSG(a|s)

Expansion

Generate Subgoals

Policy & Heuristic
Inference

Contact

Jake Tuero
tuero@ualberta.ca

Paper LinkedIn

Training from Non-Solution Trees

G0 G1
G2

G0 (G0, . . . , GN)

(i) Louvain Algorithm

(ii) Sample training data for VQVAE

1. Let (G0, G1, · · · , GN) be the output of the Louvain algorithm.
2. Select graph Gk = (Vk, Ak) for a given cluster level k in [0, N]

from (G0, G1, · · · , GN).
3. Sample edge (vk, v

′
k) in from Ak.

4. Sample scur and star from vk and v′
k respectively

such that scur and star are in V0.

a0 a1 a2

scur star

s0 s1 s2 s3

Codebook Entry ei

VQVAE
Encoder

VQVAE
Decoder

ŝg
LVQ(ŝg, star)

πlow
θ (a|ŝg, s)

(iii) Reconstruct path in G0 from scur to star,
Update subgoal generator and low-level policy

Training from Solution Trees

si

si+t′
VQVAE
Encoder

VQVAE
Decoder

c

ŝi+t′

LVQ(ŝi+t′ , si+t′)

Codebook Entries
e1, . . . , ek

VQVAE
Decoder

si ŝg0
ŝg1
...
ŝgk

πlow
θ (a|ŝgi , s)

πhi
ψ (ŝgi|s)

(i) Update heuristic model

1. Generate training set D = {(si, t−i)}t
i=0

given s0, a0, s1, ..., st−1, at−1, st
2. Update hω with D

(ii) Segment solution trajectory

1. Calculate running mean and variance of
sampled trajectories from (b.ii)
µ = mean trajectory length from (b.ii)

σ2 = variance of the trajectory lengths
from (b.ii)

2. Sample segment length
t′ ∼ N (µ, σ2)

3. Segment solution trajectory into
subtrajectories of length t′

s0, a0, s1, ..., st′
st′ , at′ , st′+1, ..., s2t′

s(t−t′), a(t−t′), s(t−t′+1), ..., st

.

.

.

(iii) Update subgoal generator

(iv) Update high-level and
low-level policy

Experiments - Training Search Loss Curves

Standard Problems:

0.0 0.5 1.0 1.5
Expansions 1e8

0

2000

4000

6000

8000

10000

O
ut

st
an

di
ng

 P
ro

bl
em

s

BoulderDash (Standard)

0 1 2 3
Expansions 1e7

Box-World (Standard)

0.0 0.5 1.0 1.5
Expansions 1e8

CraftWorld (Standard)

0.0 0.5 1.0 1.5
Expansions 1e8

Sokoban (Standard)

LevinTS() (Ours) LevinTS(SG) PHS*() (Ours) PHS*(SG) WA* (1.5)

Hard Problems:

0 2 4 6
Expansions 1e8

0

2000

4000

6000

8000

10000

O
ut

st
an

di
ng

 P
ro

bl
em

s

BoulderDash (Hard)

0 1 2 3
Expansions 1e8

CraftWorld (Hard)

0.00 0.25 0.50 0.75 1.00
Expansions 1e9

TSP (Hard)

LevinTS() (Ours) LevinTS(SG) PHS*() (Ours) PHS*(SG) WA* (1.5)

Experiment - Test Results

Algorithm Solved Expansions Length

Box-World (Standard)
WA* (1.5) 100 2,398.68 66.19
LevinTS(π) 100 605.05 67.91
PHS*(π) 100 767.06 68.07
HIPS-ε 100 467.79(†) 67.39

LevinTS(πSG) 100 411.38 66.73
PHS*(πSG) 100 378.58 66.75

CraftWorld (Standard)
WA* (1.5) 100 2,318.22 90.01
LevinTS(π) 100 262.76 93.93
PHS*(π) 100 172.04 93.49
HIPS-ε 19 116.11(†) 92.47

LevinTS(πSG) 100 208.28 93.93
PHS*(πSG) 100 103.23 94.54

BoulderDash (Standard)
WA* (1.5) 100 1,193.60 51.44
LevinTS(π) 100 61.33 52.90
PHS*(π) 100 53.65 52.74
HIPS-ε 0 — —

LevinTS(πSG) 100 65.48 53.30
PHS*(πSG) 100 53.34 52.68

Sokoban (Standard)
WA* (1.5) 100 1,091.45 32.81
LevinTS(π) 100 1,177.26 41.04
PHS*(π) 100 1,523.38 39.40
HIPS-ε 100 80.55(†) 45.24

LevinTS(πSG) 100 496.87 41.85
PHS*(πSG) 100 808.42 39.61

Algorithm Solved Expansions Length

CraftWorld (Hard)
WA* (1.5) 100 313,572.52 117.03
LevinTS(π) 0 — —
PHS*(π) 0 — —

LevinTS(πSG) 100 395,557.94 123.29
PHS*(πSG) 100 3,071.83 120.77

BoulderDash (Hard)
WA* (1.5) 16 271,636.94 58.19
LevinTS(π) 0 — —
PHS*(π) 0 — —

LevinTS(πSG) 22 315,807.91 69.5
PHS*(πSG) 100 172.32 84.5

TSP (Hard)
WA* (1.5) 1 502,624.0 45.0
LevinTS(π) 0 — —
PHS*(π) 0 — —

LevinTS(πSG) 100 570.09 40.89
PHS*(πSG) 100 41.93 41.73

Results on the test set for each of the standard
and hard domain environments. Expansions
and solution length are averaged over solved
problems. (†) Expansions reported for HIPS-ε
are only for the latent-level space, and thus are
not directly comparable to the other algorithms.

