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Introduction

Policy Tree Search:
•A class of search algorithms which uses a policy to guide the search

•A policy is a probability distribution over the set of actions

•These algorithms provide guarantees on the number of expansions
required to solve a given problem, based on the quality of the policy

The Bootstrap Search-and-Learn Process:

•Randomly initialized neural models encoding the heuristic and the
policy are used to iteratively solve a subset of the training problems

• If the search cannot solve problems within a search budget, the
resulting trees are discarded

• If at least one problem is solved, the models are optimized on the
solution trajectories found

Motivation

• Search during the online bootstrap process generates a lot of data,
but none of it is used if the search terminates prematurely

•Existing methods use a single policy which can become overburdened
on complex domains; problems can usually be decomposed into
subtasks/subgoals

Problem Statement

•This work focuses on solving single-agent deterministic search
problems, using minimal domain knowledge

•Given a set of problem instances, the objective is to solve them while
minimizing the total search loss
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Training from Non-Solution Trees
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(i) Louvain Algorithm

(ii) Sample training data for VQVAE

1. Let (G0, G1, · · · , GN ) be the output of the Louvain algorithm.
2. Select graph Gk = (Vk, Ak) for a given cluster level k in [0, N ]

from (G0, G1, · · · , GN ).
3. Sample edge (vk, v

′
k) in from Ak.

4. Sample scur and star from vk and v′
k respectively

such that scur and star are in V0.
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(iii) Reconstruct path in G0 from scur to star,
Update subgoal generator and low-level policy

Training from Solution Trees
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(i) Update heuristic model

1. Generate training set D = {(si, t−i)}t
i=0

given s0, a0, s1, ..., st−1, at−1, st
2. Update hω with D

(ii) Segment solution trajectory

1. Calculate running mean and variance of
sampled trajectories from (b.ii)
µ = mean trajectory length from (b.ii)

σ2 = variance of the trajectory lengths
from (b.ii)

2. Sample segment length
t′ ∼ N (µ, σ2)

3. Segment solution trajectory into
subtrajectories of length t′

s0, a0, s1, ..., st′
st′ , at′ , st′+1, ..., s2t′

s(t−t′), a(t−t′), s(t−t′+1), ..., st

.

.

.

(iii) Update subgoal generator

(iv) Update high-level and
low-level policy

Experiments - Training Search Loss Curves
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Hard Problems:
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Experiment - Test Results

Algorithm Solved Expansions Length

Box-World (Standard)
WA* (1.5) 100 2,398.68 66.19
LevinTS(π) 100 605.05 67.91
PHS*(π) 100 767.06 68.07
HIPS-ε 100 467.79(†) 67.39

LevinTS(πSG) 100 411.38 66.73
PHS*(πSG) 100 378.58 66.75

CraftWorld (Standard)
WA* (1.5) 100 2,318.22 90.01
LevinTS(π) 100 262.76 93.93
PHS*(π) 100 172.04 93.49
HIPS-ε 19 116.11(†) 92.47

LevinTS(πSG) 100 208.28 93.93
PHS*(πSG) 100 103.23 94.54

BoulderDash (Standard)
WA* (1.5) 100 1,193.60 51.44
LevinTS(π) 100 61.33 52.90
PHS*(π) 100 53.65 52.74
HIPS-ε 0 — —

LevinTS(πSG) 100 65.48 53.30
PHS*(πSG) 100 53.34 52.68

Sokoban (Standard)
WA* (1.5) 100 1,091.45 32.81
LevinTS(π) 100 1,177.26 41.04
PHS*(π) 100 1,523.38 39.40
HIPS-ε 100 80.55(†) 45.24

LevinTS(πSG) 100 496.87 41.85
PHS*(πSG) 100 808.42 39.61

Algorithm Solved Expansions Length

CraftWorld (Hard)
WA* (1.5) 100 313,572.52 117.03
LevinTS(π) 0 — —
PHS*(π) 0 — —

LevinTS(πSG) 100 395,557.94 123.29
PHS*(πSG) 100 3,071.83 120.77

BoulderDash (Hard)
WA* (1.5) 16 271,636.94 58.19
LevinTS(π) 0 — —
PHS*(π) 0 — —

LevinTS(πSG) 22 315,807.91 69.5
PHS*(πSG) 100 172.32 84.5

TSP (Hard)
WA* (1.5) 1 502,624.0 45.0
LevinTS(π) 0 — —
PHS*(π) 0 — —

LevinTS(πSG) 100 570.09 40.89
PHS*(πSG) 100 41.93 41.73

Results on the test set for each of the standard
and hard domain environments. Expansions
and solution length are averaged over solved
problems. (†) Expansions reported for HIPS-ε
are only for the latent-level space, and thus are
not directly comparable to the other algorithms.


